A Dynamic Temporal Neuro Fuzzy Inference System for Mining Medical Databases
نویسندگان
چکیده
The analysis and representation of temporal data are becoming increasingly important in many areas of research and application. The existing Fuzzy Cognitive Maps (FCMs) are efficient modeling method for knowledge representation and fuzzy reasoning in time series analysis. In the past, it was used to represent a complex causal system as a collection of concepts and causal relationships among concepts. However, most of the FCMs available now are constructed manually and are constrained with human experts’ intervention for assessing its reliability. This study proposes a new temporal mining system to discover temporal dependencies between the concepts of a complex causal system by building a Fuzzy Temporal Cognitive Map (FTCM) by extending the FCM. For this purpose, a four-layer fuzzy temporal neural network is proposed and implemented by the automatic creation of the conventional FTCMs from the given data. This FTCM is generated from the medical temporal database records of diabetic patients where the medical diagnosis is performed by converting the fuzzy cognetive maps into a fuzzy temporal rule based inference system using Allen’s temporal relationships and fuzzy temporal rules.
منابع مشابه
Multi-Output Adaptive Neuro-Fuzzy Inference System for Prediction of Dissolved Metal Levels in Acid Rock Drainage: a Case Study
Pyrite oxidation, Acid Rock Drainage (ARD) generation, and associated release and transport of toxic metals are a major environmental concern for the mining industry. Estimation of the metal loading in ARD is a major task in developing an appropriate remediation strategy. In this study, an expert system, the Multi-Output Adaptive Neuro-Fuzzy Inference System (MANFIS), was used for estimation of...
متن کاملDynamic Modeling of the Electromyographic and Masticatory Force Relation Through Adaptive Neuro-Fuzzy Inference System Principal Dynamic Mode Analysis
Introduction: Researchers have employed surface electromyography (EMG) to study the human masticatory system and the relationship between the activity of masticatory muscles and the mechanical features of mastication. This relationship has several applications in food texture analysis, control of prosthetic limbs, rehabilitation, and teleoperated robots. Materials and Methods: In this paper, w...
متن کاملAdaptive Neuro-Fuzzy Inference System application for hydrothermal alteration mapping using ASTER data
The main problem associated with the traditional approach to image classification for the mapping of hydrothermal alteration is that materials not associated with hydrothermal alteration may be erroneously classified as hydrothermally altered due to the similar spectral properties of altered and unaltered minerals. The major objective of this paper is to investigate the potential of a neuro-fuz...
متن کاملDesign and Simulation of Adaptive Neuro Fuzzy Inference Based Controller for Chaotic Lorenz System
Chaos is a nonlinear behavior that shows chaotic and irregular responses to internal and external stimuli in dynamic systems. This behavior usually appears in systems that are highly sensitive to initial condition. In these systems, stabilization is a highly considerable tool for eliminating aberrant behaviors. In this paper, the problem of stabilization and tracking the chaos are investigated....
متن کاملPrediction of slope stability using adaptive neuro-fuzzy inference system based on clustering methods
Slope stability analysis is an enduring research topic in the engineering and academic sectors. Accurate prediction of the factor of safety (FOS) of slopes, their stability, and their performance is not an easy task. In this work, the adaptive neuro-fuzzy inference system (ANFIS) was utilized to build an estimation model for the prediction of FOS. Three ANFIS models were implemented including g...
متن کامل